Predictive Models for Point Processes
نویسندگان
چکیده
Predictive Models for Point Processes by Wenzhao Lian Department of Statistical Science Duke University Date: Approved: David Dunson, Supervisor
منابع مشابه
Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملThe Implementation of the Distributed Model Predictive Controllers based on Orthonormal Functions for Supply Chains with Long Delays in Logistics Processes
Today, companies need to make use of appropriate patterns such as supply chain management system to gain and preserve a position in competitive world-wide market. Supply chain is a large scaled network consists of suppliers, manufacturers, warehouses, retailers and final customers which are in coordination with each other in order to transform products from raw materials into finished goods wit...
متن کاملPredictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor
The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ), maximum specific...
متن کاملPerformance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کامل